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Abstract. In the present paper it is demonstrated that the density matrix method may be 
applied to problems in time-dependent perturbation theory. The advantages of the method 
are that it is compact, systematic and the effects of radiation damping can be readily treated 
on a phenomenological basis. 

1. Introduction 

The standard method of evaluating the properties of a system subject to a time- 
dependent perturbation is of course time-dependent perturbation theory (Schiff 1968). 
However, the density matrix gives an equivalent description of the system (Fano 1964). 
Furthermore, as noted earlier (Stanton 191'2), if one is interested in evaluating entities 
to second and higher order in the perturbation, then the density matrix offers distinct 
advantages in that the method is simpler (i.e. no adiabatic switching is required and no 
integrals need be evaluated) and much quicker, and radiation damping effects can be 
readily incorporated in a phenomenological manner. Unfortunately the previous 
development (Stanton 1969) contains several formal errors and the resultant formulae 
for the hyper-Raman effect (Long and Stanton 1970) contain approximations and an 
incorrect treatment of damping effects. The purpose of the present paper is to correct 
these errors in the formalism and develop an alternative treatment in terms of which the 
effects of radiation damping can be correctly described. This is of importance since 
there is a vast literature on methods of evaluating the latter (Haake 1973, Louise11 
1973). 

2. Formalistic considerations 

For many problems associated with nonlinear phenomena we are required to evaluate 
the following integral (Placzek 1938, Bloembergen and Shen 1964): 

M h  ($LlM/$i) (2.1) 
where 14:) is a (normalised) time-dependent state of the perturbed system and M is the 
dipole moment operator of this same system. The formal problem (Stanton 1969'could 
be stated simply as one of relating the matrix element in equation (2.1) to matrix 
elements of some 'equivalent operator' between the unperturbed states I$") and I&) of 
the original system. According to the earlier work (Stanton 1969) we can write in place 
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of equation (2.1) 

Mkk = ('hn 1 4M4 1 J / k  ) (2.2) 

where 4 is a density matrix operator. Rather than discuss the inconsistencies of the 
previous formalism, we first present an alternative treatment which demonstrates that 
equation (2.2) is not valid. 

The total Hamiltonian of the perturbed system is given by 

H = H o +  V 

where Ho is the Hamiltonian of the unperturbed system with eigenstates I&) i.e. 

HoIh) = EI&) = ih(a/at)IJ/r) (2.3) 

The time-dependent perturbation V represents the interaction of the system with the 
incident electromagnetic radiation E of frequency U,  i.e. 

V = - M . E  (2.4) 

E = F exp(-iwt) + F* exp(iwr). (2.5) 

144) = d S k )  (2.6) 

where 

Expanding the perturbed states in terms of the unperturbed ones 

S 

and introducing the operator dl(t) and its Hermitian conjugate 42(t) according to the 
prescription 

Since 4,(0) = 42(0) = 1 we see that both 41(t)  and d 2 ( f )  are unitary time development 
operators that bring the time-zero basis of eigenvectors to that at time t. Thus we have 
achieved the objective of expressing the dipole matrix element in terms of the 
unperturbed eigenstates. However, the expression in equation (2.9) is not identical to 
that in equation (2.2). Furthermore, and more importantly, we see from equation (2.7) 
that 

iha4,1at=[Ho, 411-41V=[H,  411- V41. (2.10) 

ih  a W a r  = WO, 44 + W 2  = [ H  421 + d2 V. (2.11) 

This shows that neither dl nor q52 can be regarded as density operators in the sense that 
they do not obey the Liouville-von Neumann equation (Fano 1964). Nonetheless, in 

Similarly 
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the spirit of the approach introduced previously (Stanton 1969) they can be employed in 
a systematic manner for solving the problem under consideration. To this end we 
expand q51 and q52 as a power series in the perturbation denoted symbolically by the 
parameter A : 

(2.12) 

The first equation in the resulting hierarchy for r # ~ ~  (say) is then 

ih&io’ = [ H O ,  4:“’] 
with the solution 

4;’’ = exp[( - i /h )~ot ]~Y’  (0) e x p [ ( + i / h ) ~ ~ t ] .  (2.13) 

Since the perturbation vanishes at t = 0 we have from the definition of 41 in equation 
(2.7) that 

do” = c 14s~~))(4s(o)l = 1. (2.14) 
S 

Similarly 

&O’(O) = 1. 

The next equation in the hierarchy for 41 is 

ihd:” = [ H ~ , ~ : ” ] - ~ : ~ ’ V = [ H ~ , ~ : ’ ’ ] -  V. 

(2.15) 

(2.16) 

Since the ‘driving’ term V contains two characteristic time dependences, we write 

&) = &)+ +4\l)-  (2.17) 

where 

4:”’ aexp(iwt) 

4:’)- ~exp(- iwt) .  

Taking the ( q 5 r l  . . . 14,) matrix element of equation (2.16), we obtain the two solutions 

bK, = - ( M .  F*),, exp(iwt)/h(wr, + U )  

and 

4;’;; = - ( M .  F),, exp(-iwt)/h(wrm - w ) .  

Similarly the two corresponding solutions for d2 are 

q5YE = ( M .  F*)rk exp(iwt)/h(wrk + U )  

and 

4;’:: = ( M .  F ) l k  exp(-iwt)/h(wrk -U). 
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Employing these results in equation (2.9) shows that the corresponding contribution to 
the transition moment Mhk is 

i l / h ) { [ M n r ( M r k . F ) / ( W r k - W ) + ( M n r . F ) M r k / ( w r "  +w)lexp[-i(~kn + ~ ) t l  
r 

+ [ ( M n r .  F*)Mrk/(Urn - U )  

+ M n r ( M r k .  F*)/(Urk +U)]  exp[-i(okn -w)t]). (2.18) 

The expressions in equations (2.15) and (2.18) agree with known results (Placzek 1938) 
but are more concisely obtained. Since d1 and 42 do not obey the Liouville-von 
Neumann equation, it is not clear how the effects of radiation damping may be 
incorporated phenomenologically into the expressions. It is to overcome these prob- 
lems that we introduce a simpler alternative formulation of the whole problem in the 
next section. 

3. The density matrix approach 

Tracing over an arbitrary complete set of states we find that the transition moment MLk 
can be written as 

M L k  =($'nlMI$i) =Td$k)($LlM 

= Tr pM (3.1) 

P = I$k>(s:l. (3.2) 
where 

Although p is traceless, i.e. Tr p = 0, it does satisfy the Liouville-von Neumann 
equation 

@/at  = (-i/h)[H, PI (3.3) 

and as a consequence can be regarded as a density operator (Fano 1964). The problem 
is now solved in exactly the same manner as before by expanding p as a power series in 
the interaction parameter 

p = p ' o ' + h p ' 1 ' + h 2 p ' 2 ' + .  . . . 

din'= -(i/h)[Ho, p'"']-(i/h)[v, pin-l ']-rpin' (3.5) 

(3.4) 

This leads to the following hierarchy of equations: 

where the effects of radiation damping have been included phenomenologically by 
adding, in the symbolic form, -Tp to the equation of motion. 

The zero-order term is obtained from 

pi'' = -(i/h)[Ho, p'')] 

which gives 

p(O)(t) = exP(-iUk"t)/4k)(dJ" I .  
Hence the zero-order contribution to the transition moment is 

Tr p'O'M = exp(-iwk,,t) Trl&)(4,1M 

= (dn/M/4k)  exp(-iwknt)* (3.7) 
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First-order terms are obtained from 

~ ( l )  = -(i/h)[Ho, p'"] - (i/h)[ V, p'"] - rp? 

Considering the 'driving' term -(i/h)[ V, p"'] we have 

-(i/hX v, P'O'I 

-- (i/h)[M. F, p'o'(0)] exp[-i(wk, + ~ ) t ]  

+i/h[M. F", P ' ~ ' ( O ) ]  exp[-i(wkn - w ) t ] .  

This shows that p'" has two separate time components, i.e. 

Pi l ) -  - p (I)- ( t )  +p( ' )+  ( t )  

p"'- ( t )  a exp[-i(wk, + w ) t ]  

p ( ' )+  (t)aexp[-i(wk, - w ) t ] .  

where 

and 
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(3.8) 

Taking the (411 . . . 14m) matrix element of equation (3.8) shows that for p("- we obtain 

(3.9) 

But from equation (3.6) we have 

As a result the expression for p!?- becomes 

Similarly the corresponding expression for pi?+ is 

These results show that the first-order contribution to the transition moment is 

Tr p"'M = Tr p'"-M + Tr p(l)+M 

exp[-i(wk, + w ) t ]  1 M n r  ( M r k  * F) + ( M n r  * F)Mrk 
U& - w - iTr, wrn + w + iTkr 

(3.13) 

These results are identical with those previously obtained (Placzek 1938) but modified 
so as to include damping effects. We note that the present method is simpler than the 
one in the previous section involving 41 and 42, since we have only to solve the one 
equation. Furthermore as we shall demonstrate below, the second-order contributions 
to the transition moment describing the hyper-Raman effect (Long and Stanton 1970) 
can be rapidly obtained. 

The second-order equation in the hierarchy for p is 

p'*) = (-i/h)[Ho, ~ ' ~ ' 1 -  (ih)[ V, p"'] - rp? (3.14) 
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In this case the 'driving' term is -(i/h)[ V, p'"] and we have 

-(i/h)[ v, p"'I 
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= (i/fi)[M. F, p"'-(0)1 exp[-i(wk, + 2 u ) t ]  

+ (i/h)[M. F, p ' l )+  ( O ) ]  exp(-iwknt) + (i/h)[M. F* ,  p"'-(O)I exp(-iwk,t) 

+ (i/h)[M. F*,  p"'* (O)] exp[-i(wk, - 2w)tl. 

Thus p'" has three separate time components, i.e. 
p ( t )  = p ' 2 ] - 2 w ( t )  + p ' 2 ' + 2 w ( t )  +p'2'* ( t )  

p'2'-2w(t)aexp[-i(wk, +2w)t] 

p'2)+2w(t)aexp[-(Wkn - 2 w ) t l  

p ( t )  a exp(-iwknt). 

Considering the equation of motion for p'"* gives 

-iuknp")* = -(i/h)[Ho, p"'*] + (i/h)[M. F, p'"'] exp(-iot) 

where 

(2)' 

+ (i/h)[M. F*, p '"- ]  exp(i-wt) - rp(2)*. (3.15) 

Taking the (411 . . . /&)matrix element of equation (3.15), and using equations (3.11) 
and (3.12) for the matrix elements of p"'- and p ' l ) +  respectively, shows that the 
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In the limit of small damping this is approximately 

( 1 / f i 2 )  

Similarly adding together terms (vi) and (vii) we obtain in the same limit of small 
damping 

(1 / f i2 )  

Employing exactly the same procedure as illustrated above to determine the contribu- 
tions of p(2)-2w and P(2)+2w shows that the second-order transition moment is, in the 
limit of small damping, given by 

[ (Msk .  F*) (Mnr*F)Mrs / (wsk  + w  -irsn)(W,, +U +irkr)] exp(-iwk,t). 
r s  

[ (Msk .  F)(M,,.  F*)Mrs/(Wsk -O  -irsn)(Wr, - w  +irkr)] exp(-iwk,t). 
r s  

(3.16) 

This expression corrects the damping terms given in an equivalent expression by other 
authors (Long and Stanton 1970). 

4. Discussion and conclusion 

In the above analysis we have shown that it is not possible to define an operator 4 which 
is such that the transition moment M L k  can be written in the form 

M L k  (= ($'LlMlh!'k)) = (d'nI4M4IJlk). 

However, it is possible to define two entities 41 and 42 which are such that 

M L k  = (&biMd21&). 
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The corresponding equations of motion for 41 and 42 (see equations (2.21) and (2.22)) 
possessed a mixed character which show that neither 41 nor 42 can be regarded as a 
density operator. Nonetheless, by solving the two equations of motion separately one 
obtains a hierarchical structure in terms of an expansion in powers of the interaction 
parameter, and this permits a systematic solution of the problem. The main disad- 
vantage of the method is that two equations of motion have to be solved, and one has to 
balance the corresponding powers of the interaction parameter when recombining 41 
and ~ $ 2  again to obtain the transition moment MLk. This can become tedious for the 
higher-order terms. 

As opposed to this, one can give a true density matrix formulation of the problem 
which requires the solution of only a single equation, viz the Liouville-von Neumann 
equation. Not only does this simplify the manipulations; it alsq possesses the added 
advantage that the effects of radiation damping can be readily incorporated 
phenomenologically into the treatment. Finally in agreement with earlier work (Stan- 
ton 1969), it is to be stressed that the density matrix approach is not only systematic, but 
also far more compact and simpler to evaluate for the higher-order terms than is the 
usual approach based on time-dependent perturbation theory. 
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